
Aalto University

School of Science

Master’s Programme in Information and Communications Technology - Innovation

Mohammad Omar Nasir

Supervised Learning in Lighting Con-
trol Systems

Using Deep Learning for Predictive Modelling

Master’s Thesis
Espoo, September 03, 2018

Supervisors: Professor Alexander Helmut Jung, Aalto University
Advisor: Juslen Henri, D.Sc. (Tech.)

Laura Sepponen, D.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in Information and Communications
Technology - Innovation

ABSTRACT OF
MASTER’S THESIS

Author: Mohammad Omar Nasir

Title:
Supervised Learning in Lighting Control Systems
Using Deep Learning for Predictive Modelling

Date: September 03, 2018 Pages: 80

Major: Digital Media Technology Code: SCI3023

Supervisors: Professor Alexander Helmut Jung

Advisor: Juslen Henri, D.Sc. (Tech.)
Laura Sepponen, D.Sc. (Tech.)

The objective of the thesis is to develop Predictive Models for Lighting Con-
trol Systems. Lighting Systems typically employ various sensors to automatically
control installed Luminaires. An example of such a sensor is the Passive Infrared
(PIR), that detects human motion and subsequently changes the state of Lu-
minaires. These sensors have pre-defined delay timer values which control the
amount of activity in a lighting system. Luminaires are generally forced to stay
on for a long period of time, to ensure that lights are not turned off when a
room is occupied. However, using long delay timers also leads to excessive energy
consumption. By developing predictive models, the system can anticipate human
presence in advance, and tune light parameters to achieve the optimal balance.
Using deep learning, it is shown that by framing the historical data of sensor
outputs as time-series forecasting problem, it is possible to predict the output of
a PIR sensor in advance, and use that information to develop lighting systems
that can achieve higher energy savings than conventional solutions.

Keywords: Machine Learning, Lighting Control, Predictive Modelling,
Neural Networks, LSTMs

Language: English

2

Acknowledgements

I would like to extend my sincere gratitude to Henri Juslen for his overall
guidance and valuable insights on Lighting control systems. I would also like
to graciously acknowledge Laura Sepponen for her wholehearted mentorship
throughout this study. I would like to thank Javad Nouri for his guidance
on Machine Learning related challenges, and Abdullah Ibrahim for helping
understand existing software infrastructure. I also extend my gratitude to
all the wonderful colleagues at Helvar for their continued support, and for
providing a fantastic work atmosphere. Finally, my deepest gratitude goes
to my family and friends for their continuous love and support.

This research is dedicated to my late father, Dr. Nasir Mehmood.

3

Contents

1 Introduction 7
1.1 Overview of Lighting Systems 7
1.2 Lighting Control Techniques 8
1.3 Benefits of Proactive Systems 8
1.4 Outline of the Thesis . 9

2 Background 11
2.1 Drawbacks of Lighting Control Systems 11
2.2 Predictive Models . 12
2.3 Machine Learning for Predictive Modelling 13

2.3.1 Supervised Learning 13
2.3.2 Unsupervised Learning 14
2.3.3 Related Works . 14

3 Data Analysis 16
3.1 Quantitative Analysis for Time-Series 16
3.2 Components of a Time-Series 17

3.2.1 Principles of Decomposition 18
3.2.2 Representing Data as Time-Series 18
3.2.3 Decomposition Analysis 19

3.3 Forecasting Framework . 21
3.3.1 Look Back Analysis . 22

3.3.1.1 Autocorrelation Function 22
3.3.1.2 Partial Autocorrelation Function 23

3.3.2 Feature Evaluation . 25
3.4 Supervised Learning for Time-Series 26

3.4.1 Training and Validation Datasets 27
3.4.2 Cross-Validation in Time-Series 27
3.4.3 Uniformly Sampling Observations in Mulitple Time-

Series . 28
3.5 Class Sparsity . 29

4

3.5.1 Downsampling . 30
3.5.2 Frequency Distribution 30

4 Methodology 32
4.1 Feed-Forward Network . 32
4.2 Training a Neural Network . 33
4.3 Optimization . 35

4.3.1 Activation Function . 35
4.3.2 Loss Function . 35

4.4 Recurrent Neural Network . 36
4.4.1 Vanilla RNNs . 37
4.4.2 LSTMs . 38
4.4.3 Bidirectional LSTMs 39
4.4.4 Stateless vs Stateful LSTMs 40

4.5 Statistical Evaluation Metrics 40
4.5.1 Confusion Matrix . 41
4.5.2 Precision/Recall and F1-Score 41
4.5.3 Matthews Correlation Coefficient 42

4.6 Empirical Evaluation Metrics 42
4.6.1 Energy Consumption 42

4.7 Lighting Control . 43

5 Implementation 44
5.1 Data Pre-processing . 44

5.1.1 Sliding Window . 44
5.1.2 Walk-Forward Validation 45

5.2 Network Design . 46
5.2.1 Feed Forward Network 46
5.2.2 Vanilla LSTM . 46
5.2.3 Bidirectional LSTM . 48

5.3 Batch Training in LSTM . 49
5.4 Problem Definition . 50
5.5 Flow Chart . 51
5.6 Algorithm . 52

6 Evaluation 55
6.1 Network Dimensioning . 55

6.1.1 Feed Forward Network 55
6.1.2 Vanilla LSTM . 57

6.2 Evaluation using Statistical Metrics 59
6.3 Model Tuning . 60

5

6.3.1 Learning Rate, Batch Size and Dropout Regularization 60
6.3.2 Bi-directional LSTM 62
6.3.3 State Management in LSTMs 63

6.3.3.1 Stateless LSTMs 63
6.3.3.2 Resetting States Manually 64

6.4 Lookback Feature Selection 65
6.5 Estimating Model Skill . 66
6.6 Controlling Luminaires . 68
6.7 Performance on Test Set . 70

7 Discussion 72

8 Conclusions 74

A Hyperparameter Tuning 78

6

Chapter 1

Introduction

A Lighting system refers to the intentional deployment of lights for purposes
of illumination. Lighting has existed since the inception of time itself, mani-
fested through celestial bodies such as the Sun and the Moon. In its earliest
form, the concept of artificial lighting originated when human ancestors burnt
wood, leaves and other flora to create illumination. Over time, sophisticated
methods such as burning of fossil fuels became representative of evolutionary
progress. Vocational advancements coupled with societal progress gradually
placed greater emphasis on indoor lighting, framed as a direct consequence
of successive Industrial revolutions. The importance of lighting was further
solidified as people increasingly began to work in office buildings. It was
not until electricity achieved mass generation that lighting was eventually
designated a fundamental necessity.

1.1 Overview of Lighting Systems

Today, lighting is ubiquitous. Such is the pervasiveness of modern lighting
systems that it is required in every aspect of the modern life, be it inside
a class room, workplace, or outdoors for construction projects. With the
advent of IoT (Internet of Things) architecture and Big Data revolution,
lighting systems have transitioned from simpler isolated units to incredibly
complex network of lights and sensors, which often scale up to hundreds and
thousands in numbers in a single installation. The industry itself has exhib-
ited exponential growth curve in recent years [3], primarily due to expansive
urbanization and a greater demand for energy efficiency. At its core, a typi-
cal Lighting control system has an array of devices that provide luminance,
known as ’Luminaires’. The system engages various presence sensors that
determine whether the room is occupied or not, and subsequently control

7

CHAPTER 1. INTRODUCTION 8

Luminaires. This is opposed to accepting input from switch based controls
panels in more traditional variants [12, 19]. Advanced Lighting systems with
networking capabilities harness wired lighting protocols such as DALI, or
wireless technologies like ZigBee to develop messaging and control protocols
[4]. Data collected from all connected devices in a lighting network is up-
loaded to a central server, which is used to provide meaningful insights such
as device usage patterns, and fault maintenance.

1.2 Lighting Control Techniques

Early lighting control systems incorporated switch based systems, which re-
quired laborious manual intervention. Furthermore, these systems relied on
responsible usage which would inadvertently lead to wasteful energy expendi-
ture. Technological improvements led to the development of smart systems,
which utilized complementary sensors to minimize human interaction. Ex-
amples include motion detection sensors that detect movement to control
associated luminaires, thus reducing energy expenditure while continuing to
ensure light is available during room occupancy [2, 7, 12].

Bakker et al. [7] categorized lighting in intelligence by differentiating
between Reactive, Anticipatory and Proactive control systems. Reactive
controlling is the most dominant technique in modern lighting systems, de-
fined as either a switch-based control unit, or a presence sensor which is
used to control lighting. Anticipatory systems use prior knowledge such as
meeting schedules, which are retrieved from integrated office systems, or cal-
ender events of an individual user. Prior knowledge allows a smart lighting
system to preemptively control the luminaire. Proactive systems attempt
to control lighting by predicting the expectation of occupancy. Most of the
literature reviewed by Bakker et al. [7] consisted of reactive systems, with
the exception of a single study on anticipatory systems. This establishes a
promising research area for developing proactive systems in the context of
lighting control.

1.3 Benefits of Proactive Systems

The motivation to develop smarter and efficient systems stems from the in-
creasing demand for energy efficiency. The source of majority of the produced
electricity around the world comes from non-renewable energy sources. Reac-
tive lighting control systems have achieved higher energy savings as compared
to switch-based lighting systems. Similarly, a system that is able to deter-

CHAPTER 1. INTRODUCTION 9

mine the expectation of occupancy in the future can execute lighting control
commands. If this system can accurately predict when the room is going
to be occupied, it is also possible to predict when the same room becomes
unoccupied. The latter introduces a new set of possibilities for more efficient
lighting control. For example, predicting non-occupancy can be used as a
measure to determine the duration of occupancy. As long as the proactive
system continues to predict occupancy, the lighting control system can en-
sure the availability of sufficient light levels. Once the output changes to
non-occupancy predictions, the lighting control system can initiate changes
in light levels. The advantage is instead of using fixed rule-based systems
that switch light levels based on pre-configured timers, a proactive system
can dynamically adapt to various occupancy situations which can result in
greater efficiency and higher energy savings.

Occupancy situations can be repetitive in nature, for example fixed work-
ing routines of an individual, or be highly irregular, such as a celebratory
event at the office. Both situations necessitate different lighting control
strategies, in that the former requires the desk luminaire to consistently
provide light until the individual leaves their desk, where as for the latter
employees are generally clustered in one room, and a proactive system can
quickly turn off lights in non-occupied areas. For the individual case, the
system will continue to predict occupancy and ensure light remains avail-
able. For the latter, if the system were to use fixed timers, the luminaires
will continue to remain on, all over the office, until the timer expires. On the
contrary, the proactive system will observe a sudden drop in occupancy data
from the sensors, predict non-occupancy, and ensure the system dims down
light levels quickly. The objective of this research, therefore, is to explore the
possibility of developing a proactive system using Machine Learning, which
predicts the expectation of occupancy. Moreover, by finding the optimal
model the predictions can be used to simulate light levels in order to eval-
uate the influence on energy savings, and determine if tangible benefits are
achievable with this approach.

1.4 Outline of the Thesis

This thesis is divided into 7 chapters. Chapter 1 has provided an overview
of lighting control systems, with emphasis on methodologies and techniques
prevalent in modern systems. These include the DALI protocol, utilizing the
IoT platforms, and characterization of intelligence within lighting systems.
In Chapter 2 the drawbacks of the current PIR motion sensing technology
are identified. It further establishes the need for improvements in exist-

CHAPTER 1. INTRODUCTION 10

ing systems through the use of Predictive Modelling and Machine Learning.
Chapter 3 introduces the concept of quantitative time-series analysis and
forecasting as an application of predictive modelling. The goal is to repre-
sent existing PIR data as a time-series to be able to draw meaningful insights.
Using principles of the forecasting framework, the time-series is analyzed for
feature engineering.

After analyzing the input for the Machine Learning model, Chapter 4
outlines the methodological choices involved in the choice of the model and
their variants. It discusses the underlying algorithms of the chosen models,
along with strategies to evaluate their predictive performance as a classifica-
tion problem as well as in the context of lighting control. In Chapter 5, the
implementation process from building the data pipeline to model training
and evaluation is discussed. It describes the structure of the neural net-
work designed for the problem at hand along with a formal definition of the
Machine Learning problem, including various techniques for model tuning.
Algorithms for training the customized model and how the predictions will
be utilized for lighting control are presented.

Chapter 6 presents the findings of the study. It first establishes the choice
of the network parameters based on empirical results. Subsequently, the
chosen model is optimized using various strategies as discussed in Chapter 4
& 5. After determining optimal parameter values, model skill is computed
using time-series cross validation. The performance of the lighting control
algorithm, along with the energy savings, is evaluated on both the validation
sets and the test set. The results are finally summarized by reporting the
predictive performance and energy savings on the test set. Lastly, in the
concluding Chapters 7 & 8, the findings from the thesis are summarized
augmented with key insights.

Chapter 2

Background

The most commonly deployed sensor for lighting control systems is a PIR
device. A PIR sensor detects presence by measuring changes in the heat sig-
nature of the target object. This produces a variation in the output voltage
of the sensor, which is then digitally interpreted to generate a representative
binary state for room occupancy [12]. For example, the reading of a PIR sen-
sor will transition from room to body temperature if an occupant is present.
Using absolute values is therefore not a reliable measure, as it is difficult to
distinguish between static and mobile heat sources. Since the objective is
to control Luminaires, static signatures produced by indoor heating devices
can continuously trigger a PIR sensor, and consequently force the Luminaire
to stay turned on. Therefore, to achieve efficient lighting control, it is more
reasonable to use motion as an indicator of human presence.

2.1 Drawbacks of Lighting Control Systems

Lighting control systems augment the output of a PIR by applying delay
timers. A Delay timer is designed to act as a safety net; i.e. to ensure
that sudden movements such as a person exiting or re-entering a room does
not needlessly trigger state transitions for lighting devices. However, the
mechanism is not without its caveats. If the value of the delay timer is
smaller than the duration for which the occupant was motionless, the PIR
will incorrectly presume non-occupancy and force the Luminaire to switch off
prematurely. This results in poor user experience, and the occupant has to
simulate motion to turn the lights back on. A possible solution is to set the
delay timers to inordinate values. This has the unintended consequence of
increased energy consumption, where the luminaire does not turn off after the
occupant has left the room. Therefore, traditional lighting control strategies

11

CHAPTER 2. BACKGROUND 12

induce a clear trade-off between energy consumption and user experience
[12].

2.2 Predictive Models

To mitigate the consequences of the trade-off between energy consumption
and user experience, a system that learns and develops insights on the us-
age patterns of a sensor can effectively control both the delay timers and
luminance levels in real-time, without necessitating hardware changes at a
more fundamental level. Before discussing potential solutions, it is impor-
tant to realize that type of indoor environment in which the PIR is installed
is closely related to the observed movement patterns. Sensors installed in a
meeting room tend to produce sporadic trends, whereas corridor sensors ob-
serve human flow consistently. Therefore, inclusion of prior knowledge such
as meeting schedules and calender events is limited in its utility, as an antic-
ipatory system would be unable to generalize output predictions for various
PIR installation environments. A proactive system trained on the collection
of different PIR sensors would theoretically be able to learn and distinguish
between individual patterns.

Predictive Modelling is defined as a branch of data analytics that
analyses the relationship between past events to predict the most
likely outcome of the future. Such modelling techniques attempt to dis-
cern historical patterns to produce an expectation of the future. It differs
from Descriptive modelling, in that the latter is used to analyze and describe
the trends that exist within the available dataset. The input to a predic-
tive model is a representation of past events in a machine-readable format,
whereas the output consists of forecast of events that are subsequently uti-
lized for effective decision making [8].

These predicted values can be utilized to improve the existing lighting
control system in the following ways:

1. The predictions can indicate periods of both activity and inactivity in
the future, allowing the system to dynamically adjust time delay values
to minimize energy consumption.

2. Recognize false-events, i.e. situations where small time delay values
incorrectly determine inoccupancy.

CHAPTER 2. BACKGROUND 13

2.3 Machine Learning for Predictive Modelling

From Tom M. Mitchell’s definition of Machine Learning:
“Machine Learning is a scientific field aiming to build computer

systems that automatically improve with experience. A machine
learns with respect to a particular task T, performance metric P,
and type of experience E, if the system reliably improves its per-
formance P at task T, following experience E.” [18]

Machine Learning is an intersection between Computer Science and the
field of Statistics. It aims to develop algorithms based on statistical models
that determine and describe relationships between variables in the dataset.
A Machine Learning model is trained iteratively on a processed dataset with
apropriately constructed features. The objective of the training phase is
to learn the relationship between a set of inputs and outputs. The inputs
are usually referred to as independent variables or features, and the output
is known as the dependent or response variable. The algorithm penalizes
inaccuracies in the model, thus forcing it to improve accuracy with each
iteration.

Two common tasks in Machine Learning are Classification and Regres-
sion. Classification is defined as a methodology to categorize classes in the
dataset by qualifying their relationships. For example, a dataset that con-
tains pictures of different animals can be modelled to understand their differ-
ences. The descriptive power of the machine learning model would therefore
be evaluated on the identification accuracy for any unknown image. Regres-
sion is defined as a technique to quantify the relationship between dependent
and independent variables [15]. A regression model is considered accurate if
it can determine the true value of the response variable given new inputs.
An example of regression is weather forecasting based on measurements such
as temperature, pressure, etc.

To develop the modelling techniques described above, two fundamental
approaches are explained below:

2.3.1 Supervised Learning

In Supervised learning, the Machine Learning model is explicitly given in-
structions about the expected output and available inputs. A set of input
and output pairs are created in which the output is pre-labelled with a value.
For example, in the animal classification problem, each image is marked with
the name of the animal. The training process would then entail producing
the correct label given a set of input images.

CHAPTER 2. BACKGROUND 14

2.3.2 Unsupervised Learning

Unsupervised learning is performed by feeding input data to the machine
learning model without explicitly defining the response variable. The goal of
the model is to determine possible structures in the dataset [9]. An example
is a model that differentiates between different customers based on their
spending habits. It is not pertinent to classify customers into categories,
rather the classification methodology is the objective of the training process.
Unsupervised learning is inherently challenging, but necessitates less manual
work in data processing.

Based on the above discussion, Machine learning for Predictive Modelling
in the context of lighting control is best described as a Classification problem.
The response variable is the binary occupancy state of the sensor. Conversely,
the input variables are observations of the past states of the sensor. In ad-
dition, the model has to be explicitly supervised about the relationship it
needs to determine between the observations and response variable. There-
fore, the Machine Learning algorithm should be trained on past trends that
encapsulate Experience E, given Performance Metric P which represents how
well the model predicts the future for the given Classification Task T.

The objective of this study can now be summarized as the implementa-
tion of predictive modelling algorithms, which determine probabilities for the
events in the future. It is formally defined as:

What is the probability that an event will occur, for each of the
next N time steps?

2.3.3 Related Works

There has been a growing interest in Building Automation (BA) systems
in recent years. Traditional BA systems are generally reactive in nature.
An example is the Heating and Ventilation Air Control (HVAC) subsystem,
which regulates airflow and indoor temperature to maintain user comfort.
It employs sensors that measure CO2 levels and temperature values that
are further used to identify degrading environmental conditions. These act
as triggers for parametric changes in HVAC systems to achieve optimum
comfort levels.

Lighting control is another component of a BA system. Both HVAC and
Lighting control systems are analogous in terms of the defined objective and
expected benefits. Using reactive techniques to reduce energy consumption
and increase user comfort have proven to be effective and reliable. There-
fore, interest in researching methods to improve current system efficiency has
been steadily increasing. Techniques that predict occupancy in advance are

CHAPTER 2. BACKGROUND 15

beneficial in regulating air flow and temperature levels, as there is a direct
relationship between the number of occupants and CO2 levels. It is useful to
review occupancy prediction research, as the underlying concept is equally
applicable to lighting control systems.

Ryu et. al. [21] adopted a two-step approach in developing a prediction
model for HVAC systems. The first step involved constructing a decision
tree to accurately determine the occupancy at current time step, using input
from a variety of sensors including temperature, humidity, CO2, etc. This
information is subsequently used in a Hidden Markov Model to successfully
predict occupancy in the future. Similarly, Adamopoulou et. al. [1] also
propose a context-aware predictive modelling system, which builds an occu-
pancy model based on historical data, and utilizes the model to engage in
short-term and long-term forecasts.

Qolomany et. Al. [20] compared LSTMs and ARIMA models on time-
series data sampled from Wi-Fi access points in a commercial building. The
Wi-Fi data was used to identify the number of people in a room based on their
device addresses. This was pre-processed appropriately to serve as input to
the LSTM network. The research cites significant improvements over linear
ARIMA models in terms of forecasting accuracy, and serves as a basis for
the work reported in this study.

Artificial Neural networks are increasing in popularity, and have proven
to be universal function approximators. They have also been used in time-
series prediction problems. Khashei et. al. [16] proposed an ensemble of
neural networks and ARIMA models in improving prediction accuracy. Cron
et. al. [6] performed a comparative study of various neural networks used in
NN3 Time-series Prediction Competition. Their findings suggest that Neural
networks are able to perform competitively with statistical models. Given
the nature of the promising results, it is feasible to run a neural network on
time-series data without requiring detailed statistical analysis on the data
itself.

Chapter 3

Data Analysis

Before choosing a Machine Learning algorithm, it is important to under-
stand and describe the dataset. Extracting meaningful information from the
dataset, and removing spurious or confounding variables improves the accu-
racy of the model. It also aids in developing a more holistic understanding of
the problem. The objective of this section is to explain quantitative forecast-
ing principles in time-series, and to apply statistical analysis tools to discern
significant features which exist in the dataset.

3.1 Quantitative Analysis for Time-Series

A Time-Series is a sequence of observations over time. If the amount of
observations is sufficient, Quantitative analysis becomes an effective tool that
does not require the practitioner to have extensive domain knowledge. It
can be used to extrapolate historical observations by dissecting collected
information, or to explain the relationship between various aspects of the
time-series. The former is convenient as it does not require the practitioner
to completely understand the complex relationships that are assumed to exist
within the time-series; rather it deals with the quantities holistically.

For any time-series, predicting the continuation of historical patterns in
the future allows for improved decision making. Often real-world time-series
have stochastic components that are difficult to predict. The stochasticity of
real-world phenomenon does not imply that the time-series is entirely random
in nature, rather certain aspects of the observations exist that tend to exhibit
similar trends. This knowledge can be exploited to develop statistical models,
which predict the future state of time-series based on historical data. This is
defined as Forecasting [17]. Forecasting time-series is a scientific endeavour
with well-defined steps given below:

16

CHAPTER 3. DATA ANALYSIS 17

1. Problem Definition

2. Information Collection

3. Data Analysis

4. Model Fitting

5. Model evaluation

Previous sections have dealt with defining the need for forecasting in
context of lighting control. The next step it information collection. The
data from PIR sensors requires conversion into a representative time-series
for feature analysis. Any significant features that exist in the time-series are
used to develop statistical models which fit the given data, and are used to
forecast the future. Various measures are employed to determine the quality
and accuracy of the forecast.

3.2 Components of a Time-Series

A time-series can be represented as a combination of trend, seasonality,
cyclicity, and residuals patterns [17].

Trend: A trend is a general systematic pattern that exists for the dura-
tion of the series, and is characterized by a long-term increase or decrease in
its value.

Seasonality: Seasonal patterns are periodic in nature, and have a con-
stant length.

Cyclicity: Cyclic patterns differ from seasonal patterns as they do not
have a fixed length. A cyclic pattern is expected to repeat; however, the
duration of the pattern can be irregular.

Residuals: It is the irreducible error that remains in the time-series
once the effects of both trend and seasonality have been removed. This is
stochastic in nature and cannot be reliably predicted.

The size of the window represents the assumption of seasonal recurrence.
For example, a window of 60 minutes assumes that the time-series exhibits
similar pattern every hour. On the other hand, a window size of 1440 minutes
will attempt to model the daily seasonality of a PIR sensor. Therefore,
variations in window sizes produce different interpretations of the dataset.

CHAPTER 3. DATA ANALYSIS 18

3.2.1 Principles of Decomposition

Classical decomposition techniques apply linear additive models to break a
time-series into its components, defined in (3.1).

F(t) = Tt + St +Rt (3.1)

The first step is to remove any trend and cyclic components of the series.
This is accomplished by taking the moving average of the samples chronolog-
ically. By assuming that adjacent samples in the time domain have similar
values, moving average smoothers random variations in the series. The aver-
aged series is known as the trend-cycle component. This is then subtracted
from the original data to obtain seasonal and residual components [17].

The seasonal component is assumed to have a constant length before
extracting it from the de-trended series. The ith data point in each sea-
sonal window is averaged across all observations. The seasonal component is
therefore the concatenation of these averaged values as a recurring sequence.
Finally, by subtracting both trend and seasonal components from the actual
data, the remainder is the residual of the series.

3.2.2 Representing Data as Time-Series

The output of a PIR sensor is to be converted into a time-series. Whenever
a sensor detects movement, an event is recorded in the database with its
timestamp. Since the PIR can only transition between two states, the obser-
vations correspond to the state of occupancy. This is denoted as a Boolean
True value. Furthermore, the state is considered False in the absence of an
event. Hence the output of PIR sensor is a sequence of states corresponding
to binary values (1 or 0) across the time dimension.

Let P be the set of all PIR sensors:

P = {Sensor1, Sensor2, . . . Sensor5} (3.2)

The output for a single sensor is then defined as:

Pi = {e(t) | t ∈ T} (3.3)

Where e is a True event that occurs at time t; T is the Index Set con-
taining all recorded timestamps in chronological order for sensor Pi. Figure
3.1 shows the output of an examplary PIR sensor for 1 day.

CHAPTER 3. DATA ANALYSIS 19

Figure 3.1: PIR sensor output for 1 day.

3.2.3 Decomposition Analysis

Plotting the time-series reveals trends, seasonality or similar features of the
data. Figure 3.2 shows trend-decomposition of a PIR sensor over a period of
3 days using a window size of 60 minutes. The moving average plot shows
a recurring pattern of employee activity for each day, which corresponds
to office working hours.

Figure 3.2: Decomposed output of a high activity sensor, using a 60 minute
window over a period of 3 days.

Figure 3.3 contains plots for the decomposition of a PIR sensor over a
period of 30 days. Each x-axis marker indicates the start of a day. There is
minimal observed activity on weekends. This can be characterized as weekend
seasonality. Additionally, the PIR output is consistent across weekdays. The
only exception is 25th Aug, Friday, where the activity patterns are highly
sporadic. is

CHAPTER 3. DATA ANALYSIS 20

Figure 3.3: Decomposed output of a high activity sensor, using a 60 minute
window over a period of 1 month.

Figure 3.4 shows the moving average plot over a period of 1 year. The
chosen window size is 1440 minutes, which corresponds to 1 day. Ignoring
the missing data from April, the only discernible pattern is the decrease in
activity during the month of June, and at the end of December.

.

Figure 3.4: Decomposed output of a high activity sensor, using a 1440 minute
window over a period of 1 year.

To analyse in detail the composition of the PIR output from one day,
figure 3.5 shows the trend, seasonal and residual components of the time-
series. The moving average plot follows the working hours schedule. The
seasonal window size was set to 60, which assumes the patterns recur every
60 minutes. Different values were also experimented with, however, there are

CHAPTER 3. DATA ANALYSIS 21

Figure 3.5: Decomposed output of a high activity sensor, using a 60 minute
window for 1 day.

always significant residuals in the decomposed series which suggests that the
time-series comprises of non-linear components. A larger window size gives
a smoother trend, but the complexity of the seasonal component increases
to compensate for high residuals.

3.3 Forecasting Framework

A central concept in time-series forecasting is the assumption of conti-
nuity. It establishes the relevance of past observations that are expected
to persist in the future [17]. Forecasting is not possible if the time-series is
entirely stochastic in nature. This is known as a random walk. Random
walk time-series are difficult to predict, and the strategy to reproduce cur-
rent value as a forecast usually results in the best accuracy. For continuous
time-series, the extent of influence of historical data on the quality of the
forecast is a critical investigative factor. As an example, for a forecasting
model with 1 day granularity, the influence of samples from 20 years ago will
be less relevant if the forecast is strongly correlated with recent observations.

To develop a forecasting model, various aspects of the forecasting frame-
work are explained below.

1. Forecasting Origin: It is the last known sample from the dataset,
beyond which the prediction exists.

CHAPTER 3. DATA ANALYSIS 22

2. Forecasting Horizon/Look Ahead: It is the number of samples
that the model is expected to predict into the future.

3. Look Back: The window containing required past observations to
predict the future.

Larger horizons reduce the quality of the forecast, as the uncertainty, or
prediction error, increases [6]. Moreover, a larger look back window can in-
crease computational complexity at the expense of negligible gains in forecast
accuracy. Conversely, a smaller look back window encodes less information
which increases the forecast variance.

Once the size and position of these components are fixed, an update
technique is implemented, which sequentially feeds samples from the time-
series to the model. The chosen method is called Rolling Forecast Origin
Recalibration. A rolling forecast origin implies that the look back window
is progressively shifted forward in time by adding a new observation. This
updates the observations in forecast horizon as well. Using the updated look
back and look ahead windows, the model weights are recalibrated to maintain
assumption of continuity. The goal of such an approach is to develop a model
that continues to learn and generalize various patterns within the time-series.

Lastly, the method to update look back window and forecasting horizon is
called Fixed-Size Rolling Window. The update process prunes the oldest
observation to ensure the window size remains constant [24].

3.3.1 Look Back Analysis

Two time-series analytical tools, Autocorrelation Function (ACF), and the
Partial Autocorrelation Function (PACF), will be used to approximate the
size of look back window. It is worthwhile to remember that both ACF
and PACF only compute linear correlations, whereas real-world datasets can
contain non-linear dependencies.

3.3.1.1 Autocorrelation Function

Autocorrelation is defined as the coefficient of correlation between two sam-
ples in a time-series. These samples can be separated by several time-steps
which defines the lag order k. A lag k autocorrelation between two samples
xi and xi+k, is calculated by subtracting the overall mean of the series from
each pair of observation separated by k time-steps. Each difference is mul-
tiplied together and then summed over the entire time-series to produce the
covariance at lag k for all samples, normalized by mean squared difference
for the whole series.

CHAPTER 3. DATA ANALYSIS 23

ACF =

N−k∑
i=1

(xi − x̄)(xi+k − x̄)

N∑
i=1

(xi − x̄)2
(3.4)

A function which computes Autocorrelation at different orders of lag is
known as ACF. The output of an ACF is a vector of correlation coefficients
between pairs of xt and xt−k where k is the lag order. The coefficient of
correlation, r, at each lag determines persistence, or reversals. A coefficient
of 1 indicates that similar values follow in persistent patterns, whereas -
1 indicates that opposite values follow in reversal patterns. A value of 0
indicates that there is no correlation between the time samples, and the
output is similar to white noise.

3.3.1.2 Partial Autocorrelation Function

Partial Autocorrelation is calculated by removing the lagged correlation that
can propagate between the samples, to determine their unconditional cor-
relation. Consider the case where the correlation coefficient is significant
between two samples of lag order 2, xt and xt−2. A PACF provides insights
whether the coefficient is conditional on ACF propagation through the inter-
mediate sample xt−1, or the two samples are unconditionally correlated. An
example is a PIR sensor that detects movement at exactly 08:00 AM every
morning. Two samples from consecutive days would have a high correlation
coefficient, that can be reliably estimated irrespective of the conditional cor-
relation of the events within the 24-hour period between the data points. In
practice, however, it is extremely unlikely to observe the exact pattern every
day, owing to several extraneous variables such as employee behaviour, office
events, etc.

CHAPTER 3. DATA ANALYSIS 24

Figure 3.6: Sample ACF and PACF plot for a high activity sensor

Using the Python Library statsmodels [22], a sample ACF and PACF
plot for a high activity sensor is shown in figure 3.6.

Each sample in the ACF plot indicates the autocorrelation coefficient,
plotted against the 95% significance limits. If a value at lag k exceeds the
95% confidence interval, it is considered as a significant coefficient. In other
words, the current value of the time series is correlated with the previous
value at lag k.

To determine the optimal size of the look back window, the maximum
significant coefficient should be considered from the ACF. Figure 3.7 shows
a histogram of all the significant lag values, computed over the training set
for each sensor in 1 day.

CHAPTER 3. DATA ANALYSIS 25

Figure 3.7: Histogram of Significant Lag Orders

A small number of samples lie close to lag 0, which is autocorrelation
of a time-series with itself and is always 1. Lag 1 correlation indicates that
the PIR state at the previous time step is the only required information to
predict the next value. Any attempt to linearly model these sensor out-
puts would result in a naive forecast, in which the prediction is a replica
of the value at the last time step. However, using small lag order limits
the amount of information available for the machine learning model to make
predictions, whereas an increase in lag order should improve accuracy at the
cost of computation time.

Larger sequences can provide
additional contextual information for forecasting, however, it would require
greater training time. These inferences will be empirically determined in the
Evaluation section.

3.3.2 Feature Evaluation

Using data from the month of August for the selected sensors, a useful method
to identify significant features of the dataset is aggregate event count for
different granularities. Figure 3.8 shows the boxplot of number of events
for each minute of the hour.

CHAPTER 3. DATA ANALYSIS 26

Figure 3.8: Total number of events in 1 hour

Similarly, figure 3.9 visualizes the boxplot of number of events for each
hour of the day. This is symptomatic of the office working hours, and follows
a general trend.

Figure 3.9: Total number of events in 1 Day

3.4 Supervised Learning for Time-Series

In Section 2.2, the predictive modelling problem was characterized as super-
vised learning, which requires a pair of input and output sequences to be fed
to the algorithm. The next sections discuss strategies to convert raw data
into an algorithm compatible format, as useful input features. The available
dataset for this study was collected from an office. It contains the output
state of 6 PIR sensors, which are installed in corridors, working areas, and
meeting rooms.

CHAPTER 3. DATA ANALYSIS 27

3.4.1 Training and Validation Datasets

It is the requirement in a Machine Learning problem to split the dataset into
3 parts: Training, Validation and Test data. The model is initially trained
to interpret and learn the encoded information in the Training dataset. Be-
cause of bias-variance trade-off, the model must retain generalizability on
the unseen Validation set. This describes the predictive power of the trained
model. A model which exhaustively learns patterns in the training dataset
becomes sensitive to trivial changes. The goal is to learn a generic repre-
sentation of the available information, which can be used to describe similar
datasets with high accuracy.

The choice of validation set is important in context of time-series. Gen-
erally individual data points are assumed to be independently distributed,
and allow the training and validation sets to be constructed using random
sampling from the dataset. This violates the assumption of continuity for
time-series as validation samples can precede training samples in time. To
maintain autocorrelation between samples, time-series datasets need to be
chronologically preserved. Consequently, two techniques are employed: a)
Out-of-sample forecasting, which ensures that the trained model cannot peek
at the validation samples, and b) Last-block validation which fixes the last
samples from the dataset for validation [17, 24]. This ensures that forecasting
is always performed on future samples.

3.4.2 Cross-Validation in Time-Series

A Machine learning model trained on fixed training and validation sets cannot
be guaranteed to perform on other datasets with similar accuracy. It is
advantageous to train the model multiple times on different subsets of the
data, and report the average skill of the model. Generally, practitioners
use k-Folds Cross validation approach to construct multiple training and
validation subsets. This technique ensures that each data point is part of
the validation set at least once. However, it does not guarantee the temporal
order of samples and is prone to breaking the assumption of continuity.

Instead of using cross-validation, the approach adopted in this study is
to roll through the complete dataset. For example, the dataset is selected
to accommodate approximately k subsets. The first subset is then split into
training and validation sets using last-block division. The second training
set is constructed by including the first validation set at its beginning, and
adding new observations from k2 subset. The corresponding validation set
again forms the last-block of observations from k2 subset. This process is
continued until the complete dataset is divided into chains of training and

CHAPTER 3. DATA ANALYSIS 28

Figure 3.10: Rolling Cross-Validation Technique

validation sets, where the validation set never precedes its corresponding
training set.

The available dataset is between 1st Aug 2017 and 30th April 2018, which
excludes missing samples from February. Rolling training and validation
subsets of the data are created, with the ratio between each set at 40:10
days. It is visualized in Figure3.10. This mimics a real-world scenario in
which the data becomes sequentially available. The analysis in subsequent
sections is performed under the assumption that only the first training data
set is available. Moreover, the test dataset consists of 15 days preceded by
the last validation set, from 14th April to 30th April.

3.4.3 Uniformly Sampling Observations in Mulitple Time-
Series

Typically, each PIR sensor has a maximum distance, height and a beam
angle that defines its coverage area. The goal of the installation of a sensor
is to maximize the intended coverage area. Understandably, the detected
patterns should vary depending on the installation and utilization patterns
of the target area. For example, a PIR sensor whose objective is to monitor
movement in working areas will produce dense waveforms. This pattern will
be different to a sensor that is installed in the office kitchen, which typically
observes irregular motion throughout the day. Moreover, the coverage area of
a sensor is proportional to the observed activity as well. Therefore, different
sensors record events at different timestamps.

The objective here is to produce predictions for a forecasting horizon of N
minutes. This assumes that the observations from all the sensors are equally
spaced. However, a PIR event trigger entirely depends on behaviour of the
occupant. Therefore, it is imperative to define the input of the PIR as a
uniformly sampled time-series for consistency.

Re-writing the PIR output eq. (3.3):

CHAPTER 3. DATA ANALYSIS 29

P = {e(t) | e ∈ {1, 0} and t ∈ T} (3.5)

Where T is the Index Set representing fixed timestamps. A PIR sensor
will have a value of either 1 or 0 at timestep t, that is sampled using the
events since the last timestep. If an event occurred between t− 1 and t, xt

will have a value of 1.

3.5 Class Sparsity

The timestamp resolution of the recorded events is per second, which implies
that the minimum sampling frequency cannot be less than 1 second. Let the
Index Set be defined as the set containing all possible timestamps, sampled
at a frequency of 1 Hz, for a specific day. The sampled output of a PIR
sensor can be represented as follows:

Pi(s) = {e(t) | t ∈ Ts} (3.6)

Where Ts = {00 : 00 : 00, 00 : 00 : 01, 00 : 00 : 02 . . . 23 : 59 : 59}
The length of the index set is 86,400, which is the total number of seconds

in 1 day. Pi(s) is True if an event occurred at the corresponding timestamp,
otherwise the value is False. To understand the distribution of events in the
time-series, figure 3.11 shows the histogram of the count of number of events
in a single day for all sensors, computed over the whole dataset.

Figure 3.11: Distribution of Number of Events in 1 Day

Class Ratio =
Average Number of Class 1 Samples

Total Samples
= 0.53%

CHAPTER 3. DATA ANALYSIS 30

This approach creates an obvious imbalance in the dataset. Since the
output of a PIR sensor is binary in nature, data imbalance can be measured
in terms of the ratio between the two classes, and is called Data Sparsity.
Sparsity makes it difficult to learn any meaningful representations of the
dataset. Approximately 99.47% percent of the samples for a PIR belong to
class 0, and the Machine Learning algorithm will likely learn to predict class
0 for every time-step.

3.5.1 Downsampling

From a practical perspective, executing lighting control every second would
require a large amount of bandwidth over the network. Moreover, unneces-
sary switching can potentially reduce the life of a luminaire, which is avoid-
able by increasing the sampling frequency. Using a value of 1/60 Hz, the
system will take a decision about the state of a luminaire every minute. This
is achieved by effectively down sampling the data using maximum as the
aggregate function. Using an index set with a resolution of 1 minute, the
output of a PIR sensor can be described as:

Pi(m) = {e(t) | t ∈ Tm} (3.7)

Where Tm = {0, 1, 2 . . . 1440}.
The output of the sensor is True, if there was an event during the last 60

seconds. Consequently, re-computing the histogram and the class ratio gives
the following value:

Class Ratio =
Average Number of Class 1 Samples

Total Samples
=

463

1440
= 32.15%

3.5.2 Frequency Distribution

Since the source of the data is an office environment, it is logical to assume
that majority of the recorded events occur during the working hours. From
figure 3.1, it is evident that majority of the samples in the earlier and later
part of a day are False events. To determine if the behaviour of the waveform
is consistent across the dataset, the optimal window within which most of the
activity for a PIR is computed. Figure 3.12 (a) below shows the aggregated
event count of all available sensors. To determine the upper and lower limits

CHAPTER 3. DATA ANALYSIS 31

within which 99% data samples are contained, the normalized cumulative
frequency distribution is shown in figure 3.12 (b).

Figure 3.12: (a) Distribution of Events (b) Cumulative Frequency Distribu-
tion

The distribution of the event density confirms that the behaviour of the
sensors is consistent across the whole dataset, as most class 0 samples occur
at the head or tail of the data. These can be removed from the dataset to
further improve class ratio.

Counting the
number of events that occur within this window, the corresponding value of
class ratio is calculated as:

Class Ratio =
Average Number of Class 1 Samples

Total Samples
= 52.00%

Chapter 4

Methodology

The previous sections gave insights on suitable representations of a sensor
output. Once the PIR output has been converted into a time-series, the next
step is to build a Machine Learning model that takes a pair of input and
output sequences, and learns to predict a sequence given historical data.

Neural Networks

An Artificial Neural Network (ANN) is an algorithm inspired by the biology
of a human brain. An ANN simulates a brain synapse by connecting various
neurons together to induce collective learning. Information is fed to an ANN,
which flows through the network in a graph based structure. Each neuron
and its synapse is responsible for performing mathematical operations on its
input, and to subsequently transfer the output to the next neuron. The error
from the final output of the network is evaluated and is used to update the
state of each neuron to improve network accuracy [9].

4.1 Feed-Forward Network

The basic form of an ANN is known as the Feed-forward Network (FF). The
operation of this network is restricted in terms of information flow; data
can only flow in the forward direction [9]. The structure of a single neuron
network is shown in figure 4.1.

At its core, a hidden layer constitutes a neuron, defined in terms of a
Weight vector and a bias term. For multi-dimensional inputs, each feature
in the sample is multiplied with the corresponding scalar weight value. The
outputs are summed up and added to a bias value. This is fed to an activation

32

CHAPTER 4. METHODOLOGY 33

Figure 4.1: Single Neuron Feed Forward Network

function which provides the final output of the network. This operation is
known as the forward pass of the network, summarized below:

Let x, h, and ŷ denote the input, hidden, and output layers of the net-
work. The operations of the network are defined as:

h(x) = wx + b (4.1)

ŷ = act(h(x)) (4.2)

The hidden layers of a Feed forward network have connections to each
neuron in the input as well as the output layer. This type of hidden layer
is called fully connected layer. Moreover, a network is defined in terms of
its width and depth. The depth of the network corresponds to the number
of layers in the network, whereas the width of the network is the number of
neurons in each layer.

4.2 Training a Neural Network

In training phase, the goal of the ML model is to find the optimal model
parameter which produces the least error. An error function of an ML model
is defined as:

L(θ) = L(ŷ, ytrue) (4.3)

Gradient descent is a common optimization technique for ML models [9].
In real-world applications, the error function can exhibit both convexity and
non-convexity, as illustrated in figure 4.2.

CHAPTER 4. METHODOLOGY 34

(a) Convex Loss Functinon (b) Non-Convex Loss Function

Figure 4.2: Finding global optima in Gradient Descent

F(x) represents the value of the convex error or loss function in figure 4.2
(a). Similarly, figure 4.2 (b) represents a highly non-convex error function.
Since the initial value of the neurons is random, the computed loss can lie
anywhere on the graph. Since the global minimum error exists as a valley
in the loss function output, the optimization algorithm is responsible for
determining the direction to the minima. This is achieved by taking the
derivative of the error function. The derivative supplies the gradient and the
direction to the minimum error. It is then used to update the weight vector
and bias term for each neuron in the network. This technique to update the
network variables is known as backpropagation [9].

Figure 4.3: Backpropagation in Neural Networks

CHAPTER 4. METHODOLOGY 35

Neural networks have multiple hidden layers. The accumulated error is a
function of all the neurons in hidden layers, which are updated after a single
forward pass. The gradient of the loss function is calculated w.r.t. to each
trainable variable, using chain-rule differentiation.

4.3 Optimization

An implementation of a neural network can considerably vary depending on
the choice of optimization techniques. These components of the network
influence the quality of the output, and must be determined carefully.

4.3.1 Activation Function

The activation function of a neural network applies a transfer function to
each neuron in the network. There are two factors to consider when select-
ing an activation function; the type of problem and assumptions about the
nature of the output. For example, a regression model which predicts tem-
perature restricts the final output to the observed limits of the temperature.
Similarly, a classification model should predict the probability of the out-
put of belonging to N classes, in the form of an N vector of probabilities.
Moreover, activation functions are either linear or non-linear, implying the
transformation applied to the output of a neuron represents an assumption
about linearity or non-linearity within the data. Most real-world datasets are
best explained through non-linearities, however, linear functions are simpler
and efficient to compute. As discussed in the previous section, the gradient
of the loss function is computed through the chain-rule, using the output
from each layer. Therefore, the activation function must be differentiable [9].

A common example of a linear function is the straight line:

F (x) = x (4.4)

Popular non-linear activation functions include the sigmoid and tanh:

F (x) =
1

(1 + e−x)
(4.5)

F (x) = tanh(x) (4.6)

4.3.2 Loss Function

After selecting a Machine Learning model, the next step is to choose an
appropriate loss function representative of problem definition and objective.

CHAPTER 4. METHODOLOGY 36

Figure 4.4: Sigmoid and Tanh Outputs

It was established in Section 3.2.2 that the input to the model will be a time-
series, and the sequence is binary in nature. Therefore, the predictions from
the network will be a sequence of binary values. Given the true values of the
PIR for each predicted time-step, the chosen loss function should compare
the disparity with the predictions and output an error value. The larger
the deviation from true labels, the greater the error. Conversely, the error
should be minimum when the network produces accurate predictions. For
this purpose, the chosen loss function is binary cross-entropy [9]. Binary
cross entropy measures the dissimilarity between the predicted probability
and the ground truth by determining the amount of extra bits required to
encode the predicted labels.

L(θ) =
1

N

N∑
n=1

H(pn, qn) = − 1

N

∑
n=1N

[
yn log ŷn + (1− yn) log(1− ŷn)

]
(4.7)

Here p and q denote a vector of probabilities and ground truth at each
time step. To calculate the cross entropy for a sequence containing N samples,
the dissimilarity between each sample and its corresponding ground truth is
first summed, and later averaged to produce a single value. This is the total
loss of the network.

4.4 Recurrent Neural Network

A neuron in a Feed-forward network is associated with a fixed length weight
vector, since the input has a pre-determined size. In context of sequences
that have interdependent samples, the input is truncated to a specific value

CHAPTER 4. METHODOLOGY 37

and then fed to the network. The FF network will minimize the loss function
based on the input data, however, it cannot determine long-term dependen-
cies in the network. For example, the network is updated after every xt,
but it is theoretically possible to achieve lower loss if the network acquires
memory that retains knowledge of xt1 , under the assumption that xt and xt1
are strongly dependent. One solution is to feed xt and xt−1 together, but this
scales the size of the input layer unnecessarily as the dependence assumption
grows larger.

4.4.1 Vanilla RNNs

A more robust approach is to use Recurrent Neural Networks (RNNs). An
RNN treats the input data as a connected sequence consisting of condition-
ally dependent samples [13]. It computes the output based on temporal
inputs, xt, xt−1 . . . xt−n, shown in Figure 4.5. Here n specifies the amount
of past information maintained by the network, and indicates assumption of
correlation between successive data samples. The forward pass of an RNN is
similar to FF, with one critical difference. It combines the output of the hid-
den layer ht−1 when computing the hidden layer output, ht. These outputs
are called states, illustrated with the blue connection.

Figure 4.5: Vanilla RNN Architecture

Recurrent neural networks perform back-propagation after unrolling the
network for the specified sequence length, n [25]. Figure 4.5 shows an un-
rolled RNN as an extended FF network. By treating each state of an RNN
as a connected FF network, it is possible to apply backpropagation across
the whole input sequence. The parameter n specifies the extent to which
the gradient computations are performed over the past inputs. If the total
length of the input data is N, n is always smaller than N. However, using
n=N requires massive computational resources to propagate the error to the
initial data sample. A more reasonable approach is to propagate the error to
a small value of n, which improves computational performance at the expense

CHAPTER 4. METHODOLOGY 38

of memory capacity, as the network is unable to learn very long-term depen-
dencies. This is known as truncated backpropagation through time or
TBPTT [26].

RNNs outperform FFNs when dealing with time-series or sequential data
[13]. However, computing gradient updates is essentially a multiplicative
operation, and long input sequences result in the gradient reducing to a
miniscule value, or exploding to very large values. RNN outputs lead to
exploding and vanishing gradients because of the requirement of the network
to assign equal priority to each sample [14].

4.4.2 LSTMs

The introduction of LSTM (Long Short-Term Memory) networks solved
the exploding and vanishing gradient problem. By selectively utilizing or
discarding certain input samples, an LSTM ensures gradient updates remain
feasible. In RNNs, the size of TBTT controls the theoretical limit on the
memory of the network, and realistic gradient updates. This induces a trade-
off where smaller sequences avoid exploding or vanishing gradients, at the
expense of long term memory. LSTMs are therefore able to learn much
larger sequences without accumulating unreasonable values of gradients [14].

Figure 4.6: LSTM Gates

The structure of an LSTM is shown in figure 4.6. An LSTM cell imple-
ments 3 gates, forget, output and input [14]. It maintains two separate states,
known as cell state and hidden state. The hidden state is the final output of
the LSTM cell whereas the cell state is combined with various outputs from
each gate at every time step.

CHAPTER 4. METHODOLOGY 39

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4.8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (4.9)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (4.10)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (4.11)

ht = ot tanh(ct) (4.12)

W represents the weight matrix for input to each gate, which are the
inputs, cell state, and hidden state. The Input gate applies a sigmoid function
(4.8) to the input at current time-step, to decide which values to use. The
sigmoid scales the values between 0 and 1, where a value of 0 indicates the
ignored input. The input is also passed through a tanh function, which scales
the input values between -1 and 1. Both outputs are multiplied together
(4.10), where the function of the sigmoid output is to either select or drop
the tanh output. This is interpreted as assigning a priority value to each
input between 0 and 1.

The forget gate is straightforward (4.9). It applies a sigmoid to the inputs,
and produces a priority value indicating the previous cell state to keep. Once
the values from input and forget gate have been computed, they are combined
to determine the update to the cell state (4.10). This is the only time the
cell state will be updated, and this cell state will be used in the next time
step.

The value of the output gate is determined by passing the input through
a sigmoid function (4.11). The updated cell state is passed through tanh
function, after which it is multiplied with the output of the output gate.
This determines the hidden state (4.12). The updated cell state decides the
values to keep and discard, from both the input and past memory. It is
combined with the results from the output gate, to be output as the hidden
state of the cell.

4.4.3 Bidirectional LSTMs

The inputs to a Vanilla LSTMs are fed sequentially. This implies that the
LSTM cell preserves more information from the recent past, as opposed to
the oldest sample in the input sequence. At the time of the prediction, large
number of sequential computations across the time-series can diminish the
importance of earlier samples.

Bidirectional LSTMs tackle the issue by utilizing two stacked LSTM cells.
Each cell accepts the input sequence in opposite order. The first LSTM
accepts inputs in the range (xt−n, . . . xt−1, xt), whereas the second LSTM

CHAPTER 4. METHODOLOGY 40

accepts inputs between (xt, xt−1 . . . xt−n). The benefit is at the time of
prediction, the LSTM cell has information from both the oldest sample xt−n
as well as the most recent one xt, thereby providing more information context
to improve prediction accuracy [26].

4.4.4 Stateless vs Stateful LSTMs

An important hyperparameter when tuning LSTMs is the decision on when to
reset the hidden state of an LSTM cell. A cell accumulates information about
inputs using various gates, which are re-initialized after each input sequence.
This is known as Stateless LSTM. The goal of a Stateless LSTM is to
learn relationships within an input sequence, as opposed to learning long-
term dependencies that may exist between multiple sequences.

A Stateful LSTM does not reset the hidden state after processing each
input sequence. Instead it initializes the hidden state for the next input se-
quence using the state from the last input. This allows a Stateful LSTM to
learn long-term dependencies. Based on earlier data analysis, an approxima-
tion for the optimal look back window is 124 minutes. A Stateful LSTM will
continue to model the relationship between input sequences of length 124,
whereas a Stateless LSTM will reset the hidden state after each sequence.

Graves et al. [11] demonstrated noticeable improvements by resetting the
RNN state after an arbitrarily large sequence, which was of several orders
of magnitude greater than the TBTT sequence size. The model was able
to perform controlled gradient updates on shorter sequences, while retaining
context from past sequences.

4.5 Statistical Evaluation Metrics

A loss function in a neural network is used to find the optimal ML model that
minimizes overall error. To determine the predictive power of the network, a
loss function does not encapsulate all aspects of the quality of the predictions.
The simplest metric is Binary Accuracy, defined as the number of bit
changes required to convert a binary vector to another. This is illustrated
by an example below:

Y = [1, 1, 0, 1], Ŷ = [1, 0, 0, 1]

There is only 1 bit change required to convert the predictions to the
ground-truth, therefore the accuracy of the model is 75%.

In binary classification problems with imbalanced class ratios, it is helpful
to understand the number of times a model predicts each class. For example,

CHAPTER 4. METHODOLOGY 41

a ML model can achieve 90% accuracy on a dataset with 90% class 0 samples,
by predicting class 0 all the time. In context of lighting control, this has dras-
tic implications. Therefore, to accurately describe model predictions, four
classification tests, Precision, Recall, F1-Score, and Matthews Corre-
lation Coefficient will be used.

4.5.1 Confusion Matrix

A confusion matrix categorizes the predictions into four segments, as de-
scribed in Table 4.1.

Result Type Description

True Positive (TP) Both ground-truth and the prediction belong to Class 1.
True Negative (TN) Both ground-truth and the prediction belong to Class 0.
False Positive (FP) The predicted Class is 1, whereas the ground-truth is Class 0.
False Negative (FN) The predicted Class is 0, whereas the ground-truth is Class 1.

Table 4.1: Confusion Matrix for Binary Classification

In lighting control, a True Positive correctly represents occupancy predic-
tion. This will switch on the Luminaire when an occupant is present in the
room. Conversely, a TN is a correct prediction of inoccupancy. This switches
off the Luminaire when the room is empty.

However, a FP incorrectly predicts occupancy, which will lead to more
energy consumption by turning on the Luminaire during state of inoccupancy.
Moreover, a FN will switch off the Luminaire in an occupied room, resulting
in decreased user experience. From a ML perspective, it is imperative that
the model strives to maximise TP and TN, and minimizes FP and FN.

4.5.2 Precision/Recall and F1-Score

Precision and Recall are two statistical tests that incorporate some elements
of the confusion matrix. Precision is defined as the number of accurate
instances among the predicted instances, and is given below:

Precision =
TP

TP + FP
(4.13)

Recall is defined as the ratio of accurate instances from the ground-
truth if all the desired instances were retrieved:

CHAPTER 4. METHODOLOGY 42

Recall =
TP

TP + FP
(4.14)

The F1-Score is the harmonic mean of both Precision and Recall, defined
below:

F1-Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(4.15)

4.5.3 Matthews Correlation Coefficient

F1-Score does not include True Negatives in its formula. A predictive lighting
control systems must accurately predict TNs as well as TPs to minimize the
effects of the trade-off between energy consumption and user experience.
For this purpose, another statistical test known as Matthews Correlation
Coefficient (MCC) will be used. It is interpreted as a correlation coefficient
between observed and predicted binary classifications, and uses all elements
of the confusion matrix.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.16)

An MCC outputs a value close to 0, if the model predictions are random
guesses. It achieves a value of 1 when the model does not produce FPs and
FNs, which is the desirable outcome.

4.6 Empirical Evaluation Metrics

From a Machine Learning perspective, having well-defined statistical evalua-
tion metrics describe the predictive power of the model. In applied Machine
Learning, the context of the application determines the usefulness of the
model. For example, to control light levels and delay timers, it is imperative
to evaluate the quality of the model by defining custom metrics which dif-
ferentiate between predictions with high accuracy, and predictions that also
produce efficient lighting control.

4.6.1 Energy Consumption

Based on the PIR values in the dataset, the corresponding light levels can be
obtained from the database. Each PIR is used to control a specific Luminaire

CHAPTER 4. METHODOLOGY 43

with a light level on a scale of 0-255. Existing infrastructure is built using
domain knowledge and pre-conceived notions about the appropriate values
of delay timers. PIR predictions recommend both a light level and delay
timer for the Luminaires. The predicted waveform for the test Luminaires
is then compared against the actual waveform to determine the difference in
the area under the graph. This corresponds to energy savings.

4.7 Lighting Control

Controlling light levels through PIR predictions requires empirical evaluation.
If the strategy is aggressive, it is more likely to switch off Luminaires which
can potentially decrease user experience. A more relaxed strategy is prone
to increased energy consumption. As the final output of the network is the
probability of a true PIR event at each minute, it is possible to manually
control this trade-off using a decision threshold.

Once a threshold value is implemented,
need to be determined. This is controlled through a parameter defined as
timeout window.

This is a similar trade-off between user experience and energy
consumption.

For a suitable value of timeout window, user experience can be adversely
impacted if the brightness of the Luminaire is instantaneously dimmed to
zero. To achieve realistic lighting control, fade timers are used that grad-
ually decrease the light level.

Chapter 5

Implementation

This section discusses the implementation details of the Machine Learning
model explained in the previous chapters, and associated challenges.

5.1 Data Pre-processing

Once the raw PIR data has been converted into machine-readable time-series
format, it is ready to be fed to the model. Consequently, the dataset needs
to be processed into pairs of input and labelled outputs for supervised learn-
ing. Each pair consists of an input and output time-series, whose lengths
are denoted by look back and look ahead windows. Let X and Y denote
the complete set of data sample pairs, chronologically preserved to maintain
temporal relationships. Modifying eq. 3.5 the equation for a single PIR:

P = {e(t) | e ∈ {1, 0} and t ∈ T} (5.1)

Where T is the index set: T = {0, 1, 2 . . . N − 1} and N is the total
number of samples in the dataset sampled at 1 minute frequency.

5.1.1 Sliding Window

The dataset is first chained together to form a one-dimensional time-series.
This sequence is then split into Feature and Label space, using look back
and look ahead windows. Each subsequence is shifted by 1 sample, to create a
Rolling window on the dataset. These are commonly used to transform time-
series for inputs to a ML algorithms. Let X and Y represent the feature and
label space respectively:

(5.2)

44

CHAPTER 5. IMPLEMENTATION 45

(5.3)

(5.4)

At t, the input and output to the model is look back and look ahead PIR
outputs respectively, where the outputs are preceded by input sequences
chronologically. By feeding a continuous time-series, the goal of the model
is then to learn possible relationships between the two binary distributions,
operating under the assumption that only a finite number of variations of the
distributions exist. The trained model can then predict the expected output
of the PIR sensor in the form of a time-series, based on the input sequence.

5.1.2 Walk-Forward Validation

After predicting look ahead number of samples, the algorithm executes light-
ing control and awaits further data.

Therefore, the validation data set is pre-processed in the following way:

(5.5)

(5.6)

If the length of the sub-sequences for either of the data samples is shorter
than their respective window sizes, the sequence is padded with zeros to
ensure uniformity.

CHAPTER 5. IMPLEMENTATION 46

5.2 Network Design

After understanding the underlying functionality of the building blocks of
a neural network, it is important to determine the optimal configuration
of the connections between various components. Two main types of neural
networks are implemented with a brief discussion on each in the following
sections.

5.2.1 Feed Forward Network

Designing a Feed Forward network is relatively simpler. The time-series in
each data sample is

Table 5.1: Design of Feed Forward Network

5.2.2 Vanilla LSTM

The input to an LSTM cell is three dimensional. The first dimension corre-
sponds to the index to the data set. The second dimension is the length of
the individual sequence, and the last dimension corresponds to the number
of input features. Similarly, the output is also three dimensional with the
first two dimensions having the same values. The third output dimension is
the number of response variables.

The input and corresponding hidden state dimensions of an LSTM cell is
given below:

•

•

CHAPTER 5. IMPLEMENTATION 47

• Output:

The model is able to compare, time-step wise each prediction with its ground
truth, and evaluate the loss using binary cross-entropy.

Table 5.2: Proposed LSTM Architecture

CHAPTER 5. IMPLEMENTATION 48

Figure 5.1: Proposed LSTM Flow Diagram

5.2.3 Bidirectional LSTM

The implementation of the Bidirectional LSTM follows the same architec-
ture, with the difference in the functionality of an individual LSTM cell.

Moreover, the dimensions of the network become enlarged
due to the availability of another sequence. The merge operation can be
performed in multiple ways; the most common approach is to concatenate
both sequences along the feature dimension.

Table 5.3: Proposed Bidirectional LSTM Architecture

CHAPTER 5. IMPLEMENTATION 49

Figure 5.2: Proposed Bidirectional LSTM Flow Diagram

5.3 Batch Training in LSTM

Mini-Batch training is a technique used in stochastic gradient descent. In-
stead of using the complete data set as a single batch for a full gradient
update, random sampling from the dataset is performed to select a mini-
batch of the data. On expectation, the global minimum loss achieved from
mini-batch gradient descent is equivalent to batch gradient descent [9].

Random sampling does not preserve the order of the dataset. For time-
series datasets, the sequences must be fed chronologically. Therefore, it is
imperative to select mini-batches for input to an LSTM by preserving their
sequences. For example, if the mini-batch size is 32, the first 32 subsequences
are selected as batch 1, the next 32 subsequences constitute batch 2, and so
on. One complete iteration over the whole dataset is known as 1 epoch.

The output of the loss function is a single value for each subsequence, as
the cross-entropy loss is a summation operation over the discrepancy between
individual predictions and their associated ground truth. Since each mini-
batch contains multiple sequences, the loss is usually averaged over all the
sequences to be used in gradient descent in deep learning frameworks. It can
be assumed that a mini-batch size consisting of a single sequence is logical
in the context of time-series, as the network should learn short-term depen-
dencies within 1 sequence, and long-term dependencies between sequences.
Using mini-batches of multiple sequences would otherwise average the tem-

CHAPTER 5. IMPLEMENTATION 50

poral relationships between the sequences. However, the variance introduced
by a batch size of 1 is large, and as a result, the model is unable to learn any
meaningful interpretation of the time-series.

Feeding a mini-batch to the LSTM, containing sequences of look back
length, produces a similarly sized mini-batch of predictions containing se-
quences of look ahead length. In a walk-forward validation system, data
from the look ahead window is not yet available. The validation model can
only accept mini-batch of size 1, which is equivalent to feeding 1 input se-
quence at a time. This is realized by initiating two neural networks with
different dimensions. The first network is trained on the dataset using mini-
batches larger than 1. The network weights are then copied to the second
network which is used to evaluate the validation dataset.

5.4 Problem Definition

Both the feature and label space have been sampled from the input space
consisting of all possible PIR events, as defined in equations (5.1), (5.2) and
(5.3). To formally define the Machine Learning problem, let H denote the
hypothesis space consisting of the set of mappings which produce the PIR
predictions, ŷ, based on historical input x. It is represented as:

H : X → Y (5.7)

Where x(i) ∈ X and y(j) ∈ Y represent vectors in the feature and label space.

Each predictor mapping h in the hypothesis space H is associated with
a collection of weight matrices W. Because the architecture of the network
contains the predictor
map can be broken down into separate functions. Let f denote the mapping
of x, using weight matrix W(1) into a hidden representation via the

:
h(1) = f (W(1),x) (5.8)

Here h(1) represents the hidden state,

consumes a separate weight matrix W(2).

h(2) = f ′(W(2),h(1)) (5.9)

Lastly, the output from the h(2) is used as an input to the
, represented by f ′′, to produce predictions ŷ.

ŷ = f ′′(W(3),h(2)) (5.10)

CHAPTER 5. IMPLEMENTATION 51

Therefore, a general mapping predictor h can be re-written as follows:

ŷ = f ′′(f ′(f (x))) (5.11)

Which is equivalent to:

ŷ = h((W(1),W(2),W(3)),x) (5.12)

or,
ŷ = h(W,x) (5.13)

To determine the optimum predictor h, the gradient descent algorithm
will use Binary cross-entropy as the loss function, discussed in Section 4.3.2.
The loss function can be written as follows:

J ((x, y); ŷ) =
1

N

N∑
n=1

L(ŷn, yn) (5.14)

Therefore, the optimal h is characterized by the values of the weight
matrix W which minimize the binary cross-entropy loss between labels y
and predictions ŷ.

5.5 Flow Chart

To summarize, the complete process for training and evaluation is shown in
Figure 5.3. Data from PIR sensors is reformatted for supervised learning, and
is split into training, validation and test sets. Each network type is fed with
the training data and its performance is evaluated using validation data set.
The best model for each network type is chosen, which is further evaluated
using Statistical metrics. The selected model is evaluated on test data set,
where the predictions are used to control Luminaires. The projected light
levels and delay timer values are empirically evaluated against real-world
settings.

CHAPTER 5. IMPLEMENTATION 52

Figure 5.3: Complete Flow Chart

5.6 Algorithm

Algorithm for Vanilla LSTM/Bidirectional LSTM training is given below.
Using sliding window technique, the data set is initially transformed into
input and output sequences. These sequences are grouped together into

CHAPTER 5. IMPLEMENTATION 53

mini-batches, while preserving chronology of the time-series.

Algorithm 1 Procedure LSTM Train

After the predictions have been generated by the neural network, they are
transformed into equivalent light levels. As stated earlier, a trade-off exists
between energy consumption and delay timers. For a baseline evaluation, the
optimization of delay timers in real-time is performed according to a rule-
based system.

CHAPTER 5. IMPLEMENTATION 54

Algorithm 2 Procedure Generate Light Level

Chapter 6

Evaluation

Before evaluating the effect of different features in terms of the length of the
look back window, the optimal dimension of the neural network is empiri-
cally determined. The optimal size of a neural network is ascertained using
an exhaustive search of possible network variations, detailed in the next sec-
tion. Each network variation is run for fixed number of epochs, after which
the iteration with the lowest validation loss is recorded. This iteration rep-
resents the lowest achievable loss of that network. Finally, all the variations
are compared based on individual loss values, to select the optimal network
dimension.

6.1 Network Dimensioning

The various hyperparameters that are tuneable include the depth, width,
activation function, batch size, regularization and learning rate. For each of
the proposed network types, an initial grid search is executed to determine
the best depth and width of the network. The look back window is , and
the look ahead window is set at minutes for all the network variations.
The batch size is set at .

6.1.1 Feed Forward Network

The Feed Forward network is evaluated using various values for depth and
width, give in Table 6.1. Each hidden layer uses as activation function.
The output layer uses as the activation function. The network was
trained using optimization algorithm with the default learning rate of

.

55

CHAPTER 6. EVALUATION 56

Width

Depth Train Valid Train Valid Train Valid Train Valid
0.426 0.439 0.426 0.444 0.424 0.443 0.454 0.438
0.418 0.447 0.451 0.451 0.419 0.45 0.402 0.461
0.421 0.458 0.414 0.463 0.419 0.467 0.402 0.46

Table 6.1: Training Validation Loss for Feed Forward Network

(a) Training Mode

(b) Validation Mode

Figure 6.1: Visualizing Loss Function for Feed Forward Network

CHAPTER 6. EVALUATION 57

The results show that the model with the lowest validation loss is a
Feed forward network. Moreover, a network

with a width of provides approximately the same validation loss, with
a marginal difference of 0.22%. A significantly lower training accuracy is
achieved with a depth network, however, higher capacity mod-
els tend to overfit the training dataset. Using the above results, the selected
model is a because of similar perfor-
mance with less computational requirements.

6.1.2 Vanilla LSTM

The Vanilla LSTM is implemented using

Similarly, the width of
the network refers to the number of neurons in each LSTM cell. These cells
use as the default activation function. The output layer is a distributed
fully connected layer with as the activation function. The network is
again trained with algorithm, with the default learning rate of .
Moreover, a default dropout value of was used.

Width Width Train Valid Train Valid Train Valid Train Valid
0.429 0.417 0.424 0.423 0.423 0.423 0.424 0.422
0.426 0.419 0.423 0.411 0.414 0.418 0.421 0.424
0.426 0.421 0.42 0.417 0.425 0.425 0.42 0.419
0.423 0.411 0.423 0.416 0.416 0.413 0.423 0.418

Table 6.2: Training Validation Loss for Vanilla LSTM Grid Search

CHAPTER 6. EVALUATION 58

(a) Training Mode

(b) Validation Mode

Figure 6.2: Visualizing Training and Validation Loss for Vanilla LSTM

LSTMs exhibit similar trade-off between model capacity and validation
loss. Deeper models exhibit lower training and higher validation loss. Based
on the results, two models achieve the same validation loss in 50 epochs,

neurons, and
neurons. Because of the difference between training times, the

model is considered optimal as it provides the same performance in less
computation time.

CHAPTER 6. EVALUATION 59

6.2 Evaluation using Statistical Metrics

Based on the results of the grid search on network design, the best performing
models for each type of neural network are selected. These are

Feed Forward Network, and LSTM.
To differentiate between the two models, it is necessary to involve other met-
rics to make the decision more robust. Using the statistical metrics defined
in Section 4.5, both models are evaluated on the validation dataset and the
results are summarized in Table 6.3.

Network
Classification

Accuracy Precision Recall F1-Score MCC

FFN 80.8% 0.761 0.817 0.788 0.615
LSTM 80.9% 0.772 0.797 0.785 0.614

Table 6.3: Metric values at threshold 0.5

It is evident that there is negligible difference between the models, how-
ever, it is important to realize that binary classification metrics require pre-
diction probabilities to be rounded off to the nearest class. The default
threshold is 0.5, i.e. a probability of at least 0.5 is considered as Class 1,
or a True event. Values lower than 0.5 are classified as Class 0. In other
words, the optimal value for the classification metrics might vary for differ-
ent thresholds. Figure 6.3 shows the variation of each metric against different
threshold values.

Figure 6.3: Statistical Metrics

CHAPTER 6. EVALUATION 60

There is trade-off between Precision and Recall, but a higher Recall is
beneficial as it reduces the number of false-off events. Based on the two
graphs, the peak F1-Score and MCC value occurs at a threshold value of 0.27
for LSTM, and 0.21 for FFN, summarized in Table 6.4. LSTM outperforms
FFN in each metric at optimal threshold value. Moreover, it is evident that
the threshold favours higher values of Recall in the Precision-Recall trade-off.

Network
Classification

Accuracy Precision Recall F1-Score MCC

FFN (t=0.21) 79.8% 0.709 0.911 0.798 0.622
LSTM (t=0.27) 81.0% 0.723 0.914 0.807 0.641

Table 6.4: Metric values at optimal thresholds

6.3 Model Tuning

Based on the results from the previous section, the selected network is LSTM.
Previously, the LSTM was trained using default values for the hyperparam-
eters. Since it is computationally infeasible to run a holistic grid search on
all possible combinations of different parameters, it is desirable to vary each
parameter individually, while fixing the rest of the parameters. This does
not provide definitive parameter values, rather it is used to identify optimal
values. This section executes a grid search on the chosen network type to
determine if further gains are achievable.

6.3.1 Learning Rate, Batch Size and Dropout Regu-
larization

The three chosen hyperparameters are Learning rate, Batch size and Dropout
regularization. The evaluated values of Learning rate are
, for batch sizes and dropout of

The results for Learning rate are visualized in Fig A.1 and tabulated in A.1.
The results for batch size are visualized in Fig A.2 and tabulated in A.2. The
results for dropout are visualized in Fig A.3 and tabulated in A.3.

Very small learning rate predictably demonstrates poor learning capabili-
ties on both the training and validation set. Conversely, a large learning rate
exhibits wildly fluctuating descent curve. Both are arguably
similar, therefore the chosen learning rate is based on marginally im-
proved validation dataset performance.

CHAPTER 6. EVALUATION 61

The difference in validation set performance is negligible for and
batch size. A batch size of appears to perform larger updates during
gradient descent in the initial epochs, and achieves an overall lower loss. A
batch size of achieves the lowest loss on training dataset, but performs
poorly on validation data. Moreover, the final few epochs of the validation
curve demonstrate that the loss values for larger batch sizes is plateauing,
and they eventually reach approximately the same minimum loss. There
is significant improvement in training time as well for larger batch sizes.
Therefore, a batch size of is selected.

The regularization trade-off between model capacity and validation per-
formance is evident here. dropout, , shows consistently high
training loss but manages to perform well on the validation dataset, after
about 20 epochs. No dropout produces the lowest training loss but performs
poorly on validation set. Moreover, apart from a dropout of , all other loss
curves demonstrably increase in the final epochs. This indicates that learn-
ing is still possible with a dropout of , hence it is chosen as the optimal
value.

The LSTM network was re-trained using the combination of optimal hy-
perparameter values, for 100 epochs. The combination with the best result
is given in Table 6.5. The lowest achievable validation loss remains at 0.411.

Figure 6.4: Optimal LSTM Loss Function

Train Loss Valid Loss

0.423 0.411

Table 6.5: Loss Values for Optimal LSTM Model

CHAPTER 6. EVALUATION 62

6.3.2 Bi-directional LSTM

Bi-directional LSTMs outperform vanilla LSTMs in a variety of tasks. Using
the optimal network parameters from the previous sections, the model is re-
implemented using Bi-directional LSTM cells instead, to determine if further
improvement is possible. The results of the training and validation loss,
combined with statistical metrics are given in Figure 6.5 and Table 6.6.

Figure 6.5: Bi-directional LSTM Loss Function

Train Loss Valid Loss

0.414 0.419

Table 6.6: Loss Values for Bi-directional LSTM

Bi-directional LSTM performs slightly worse on the validation dataset
while achieving a much lower training loss for the same number of epochs.
This is because a Bi-directional LSTM cell has twice the model capacity.
Moreover, bi-directional LSTMs perform well on language translation models
where the context of the whole sentence dictates the next word. In autore-
gressive time-series problems, the oldest information might not be as relevant
as the most recent sensor activity. This explains the similar performance of
the bi-directional model.

With appropriate regularization, a Bi-directional LSTM would be able
to achieve comparable performance, however, given the much higher compu-
tational requirements and training time, the trade-off between performance
gains and computational requirements is infeasible.

CHAPTER 6. EVALUATION 63

6.3.3 State Management in LSTMs

As discussed in Section 4.4.4, the hidden state of an LSTM from the last
time step is consumed to produce the next output. By iteratively updating
and consuming the hidden state, an LSTM cell can retain information about
the past occurrences of events for a continuous time-series sequence. If the
hidden state is never reset, the last output of the cell would be conditionally
dependent on the hidden state from the earliest time-steps. This dependence
will become insignificant, contingent on the increasing distance between the
two data points. In addition, the contribution from the earliest time steps
will be infinitesimally small in gradient updates. This section deals with the
effects of manually resetting the internal state of an LSTM cell.

6.3.3.1 Stateless LSTMs

For all the previous experiments, the hidden state was forced to persist across
all samples. A variant of an LSTM cell, which resets the state every time
a sample has been processed, is implemented. It does not imply that the
hidden state does not persist across consecutive time-steps, rather it is only
retained for a single subsequence i.e. Once the network trains
on 1 sample of size look back, the state is manually reset. Conceptually, the
LSTM cell should only learn patterns within a subsequence whilst ignoring
inter-sequence dependencies.

The results for a Stateless LSTM cell are given below:

Figure 6.6: Stateless LSTM Loss Function

CHAPTER 6. EVALUATION 64

Train Loss Valid Loss

0.421 0.406

Table 6.7: Loss Values for Stateless LSTM

The Stateless LSTM delivers improved performance on the validation set.
Assuming the optimal look back window is based on empirical
ACF and PACF plots, coercing the LSTM cell to retain memory across longer
time-steps should produce negligible gains. This has now been empirically
verified, as the model achieves a lower loss value when it is trained to treat
each subsequence independently. Furthermore, the performance has slightly
improved as well, possibly due to the network learning spurious correlations
with samples beyond which eventually decreases model skill.

6.3.3.2 Resetting States Manually

The distribution of all the PIR sensors was shown to be concentrated within
working hours in Section 3.5.2. To generalize, the expected pattern of a PIR
sensor in a day can be used to provide bounds on the memory of an LSTM
cell. This is achievable by feeding input sequences to an LSTM cell and
allowing the cell to retain long-term memory up till the end of the
period. The hidden state is persisted across after which it is
reset. The results are shown in Figure 6.7. The performance is similar to a
stateful LSTM, and does not provide any significant benefits.

Figure 6.7: Managed State LSTM Loss Function

CHAPTER 6. EVALUATION 65

Train Loss Valid Loss

0.424 0.414

Table 6.8: Loss Values for Managed State LSTM

6.4 Lookback Feature Selection

Various methodologies and model parameters were tested in the previous
sections. Based on the results, a stateless LSTM is selected in the proposed
Encoder Decoder network framework as the optimal strategy for the given
machine learning problem. This section deals with evaluating the effect of the
look back window on forecasting accuracy. The chosen look back windows
are minutes. Each instance is evaluated using both
cross entropy loss, and classification accuracy.

LookBack
Cross-Entropy Loss Accuracy

Train Valid Train Valid

0.422 0.413 80.9% 81.2%
0.422 0.409 81.0% 81.4%
0.424 0.411 80.9% 81.3%
0.422 0.408 81.0% 81.5%

Table 6.9: Lowst Values of Loss Function for Look Back Windows

Window sizes higher than minutes exhibit erratic fluctuations after
the network has been training for more than 50 epochs. The loss value for
lookback of for stateless LSTM was 0.406, similar to the value attained
by lookback window of minutes. The slight variations in loss values can
be explained by considering random weight initializations in the network.
Moreover, the accuracy is negligible across the look back windows.

CHAPTER 6. EVALUATION 66

(a) Training Mode

(b) Validation Mode

Figure 6.8: Loss Function for Different values of Look Back Window

6.5 Estimating Model Skill

Using rolling cross-validation, the model is re-trained one-by-one on the 5
subsets of the dataset. For each subset, last-block validation technique is used
to fix the relative placements of training and validation set chronologically.
Figure 6.9 shows the loss function plots for each dataset. Table 6.10 lists
summary statistics, which are used to describe the expected performance of
the deep learning model.

CHAPTER 6. EVALUATION 67

(a) Training Mode

(b) Validation Mode

Figure 6.9: Loss Function for Rolling Cross-Validation

Rolling CV Mean Std. Dev. Std. Error Min Max

Cross-Entropy Loss 0.381 0.058 0.026 0.305 0.459
Accuracy 81.20% 3.30% 1.50% 76.80% 85.30%

Table 6.10: Descriptive Statistics for Model Skill

In forecasting problems, the baseline is often called the naive forecast,
which is a replication of the samples from the look back window. Each
model with the lowest validation from 5-fold cross validation is now compared
against a 10-step naive forecast, for both cross-entropy loss and classification
accuracy. The forecast horizon consists of samples from xt−1 to xt−10. The
results are summarized in Table 6.11.

CHAPTER 6. EVALUATION 68

Validation Sets

Cross-Entropy Loss 1 2 3 4 5
Naive Forecast 3.779 2.684 3.489 3.073 4.138
Trained Model 0.407 0.305 0.382 0.353 0.459
% Reduction 89.23% 88.64% 89.05% 88.51% 88.91%

Classification Accuracy 1 2 3 4 5
Naive Forecast 76.40% 83.30% 78.20% 80.80% 74.20%
Trained Model 81.50% 86.40% 82.50% 84.90% 79.10%

% Increase 6.26% 3.59% 5.21% 4.83% 6.19%

Table 6.11: Loss and Accuracy Values for Naive Forecast

It is evident that the trained model produces a higher classification accu-
racy at a lower cross-entropy loss. If the time-series were completely random,
the model would have produced a naive forecast. The results validate the hy-
pothesis that the series is not completely random, rather there are repeating
patterns and non-linearities that are captured by the LSTM model.

6.6 Controlling Luminaires

For each validation set, the luminaires that are associated with each sensor
are first identified. The light levels for each luminaire are then obtained cor-
responding to the dates in the dataset. Rolling predictions are fed to the
lighting control algorithm to generate recommendations for each luminaire.
These recommendations are compared with the actual light levels by calcu-
lating the area under both curves. The light levels are generated using
timers, with delay timers set at minutes. The recommended light
level is set at of the current luminaire setting. This is
desirable instead of using absolute values, because the luminaires are also
controlled through other sensors such as ambient light. Figure 6.10 shows
the output of a sensor and its associated luminaire for 1 day, whereas Table
6.12 summarizes the results of computing the area under the curve for all
validation data sets. Due to non-availability of detailed PIR control mes-
saging, it is not possible to evaluate the impact on user-experience with the
validation dataset.

CHAPTER 6. EVALUATION 69

Figure 6.10: Sample output of the Lighting Control Algorithm

The green plot shows the actual light level, whereas the blue plot is the
recommended light level. The drop in light levels after 13:00 follow ambient
light sensor recommendations. To account for such unexpected variations,
the algorithm to determine the next
recommendation. Moreover, the effects of large delay timers are evident at
the 19:00 mark. The luminaires continue to remain on, even though the
sensor registers little activity. This makes it possible to incur energy savings
by predictably turning off the luminaire. However, a false-negative event
occurs at 21:00 when a stochastic PIR trigger takes place exhibiting the
limitations of such a system.

The sensor is installed at the working desks, and predictably observes
consistent activity. Therefore, the energy savings are comparatively lower
with a mean value of 14%.

Model Number
Sensor

1 2 3 4 5 6

1 16.39% 63.84% 15.38% 8.87% 6.09% 24.83%
2 22.80% 58.32% 14.16% 7.17% 9.58% 9.93%
3 6.86% 46.74% 10.41% 8.17% 4.76% 10.67%
4 - 56.43% 13.16% 10.08% 9.70% 13.31%
5 22.94% 64.70% 15.00% 17.65% 23.58% 30.74%

Table 6.12: Energy Savings for Selected Sensors for all Validation sets

CHAPTER 6. EVALUATION 70

Mean Std. Dev. Min Max

21.46% 18.27% 4.76% 64.70%

Table 6.13: Descriptive Statistics for Energy Savings

The mean energy saving is 26.20%, with a standard deviation of 18.57%.
This is best explained by analyzing the patterns of individual sensors, as
some sensors observe high activity compared to others. For these sensors,
the algorithm will not be able to generate significant energy savings because
consistent activity ensure that the luminaire rarely switches off. Conversely,
for areas with sporadic activity, such as meeting rooms, larger delay timers
ensure the light stays on even after the occupant has left the room, which
provides the opportunity to incur higher savings once non-occupancy has
been predicted.

6.7 Performance on Test Set

The last step is to evaluate the performance of the trained models on the
test dataset. According to the assumption of continuity, and the relation
between forecast horizon and forecast error, models trained on data from
August should perform adversely on test data, as it has been selected from
the end of the dataset i.e. April. To verify the hypothesis, optimal models
from each of the 5-folds are evaluated against the test dataset through both
statistical and empirical metrics.

Model
Number Test Loss Accuracy Precision Recall F1-Score MCC

1 0.457 79.1% 0.743 0.905 0.816 0.594
2 0.459 78.9% 0.739 0.908 0.815 0.591
3 0.456 79.3% 0.747 0.902 0.817 0.597
4 0.458 79.5% 0.764 0.869 0.813 0.595
5 0.462 78.7% 0.739 0.905 0.814 0.588

Table 6.14: Test set Performance

Based on the results in Table 6.14, the lowest validation loss occurs for
model number 3, trained on the December dataset. Moreover, the worst
performing model was trained on the last validation dataset from April.
This implies that the values obtained after evaluating the earliest and latest

CHAPTER 6. EVALUATION 71

trained models on the test set are similar, and the model does not need to
be re-trained once new sensor data has been collected.

Model Number
Sensor

1 2 3 4 5 6

1 34.85% 18.08% 19.15% 75.76% 19.67% 17.25%
2 31.92% 17.17% 17.99% 75.23% 18.76% 17.08%
3 35.16% 18.03% 19.00% 74.37% 18.97% 18.74%
4 38.50% 21.97% 22.29% 77.08% 22.65% 21.70%
5 31.79% 16.41% 16.49% 73.72% 17.72% 17.51%

Table 6.15: Energy Savings on Test set

Mean Std. Dev. Min Max

30.83% 21.10% 16.41% 77.08%

Table 6.16: Descriptive Statistics for Energy Savings on Test Set

The behaviour of the various trained models on prediction quality is con-
sistent across each sensor. For example, the minimum and maximum energy
savings for Sensor 2 have a difference of approximately 5%. Furthermore, the
mean energy savings are 30.8%, with the overall energy saving for different
sensors varying from approximately 16% to 77%.

Chapter 7

Discussion

The established research in building automation systems is focused on pre-
dicting the number of occupants in a room; or the resolution of forecast
horizon is large enough to reduce the stochasticity of human behaviour, as
discussed in Section 2.3.3. It is possible to predict number of occupants for
the next 30 minutes, and develop a robust predictive model for HVAC sys-
tems. The most significant difference between both systems is that HVAC
is less chaotic and requires more time to effectively control indoor climate,
whereas lighting is highly sensitive to human motion patterns. Therefore, it
is insufficient to simply develop a model that generates an overall probability
of occupancy for the complete forecast horizon; rather, the expected devi-
ations in the pattern of occupancy over the horizon are significantly more
intuitive in the context of lighting control decisions.

Traditional time-series forecasting techniques require detailed statistical
analysis of the underlying data, in order to develop robust prediction models.
Neural networks, however, do not require a thorough analysis on time-series
data, and have demonstrated comparable performance. These models suf-
fer from parameter tuning issues, require huge amounts of data, and are
generally difficult to train. On the other hand, neural networks can more ef-
fectively capture non-linearities in the data. By augmenting traditional sta-
tistical analysis tools for time-series with the modelling capabilities of neural
networks, it is possible to use recurrent networks for time-series forecasting
problems.

Time-series in existing research is highly seasonal. For example, popular
time-series climate datasets can be de-trended to produce accurate forecasts
using simpler models. In contrast, the highly stochastic data analyzed in this
study is dependent on human behaviour in office environments, which reduces
the forecast accuracy in comparison. Even with the daily seasonality, lighting
control requires a higher forecasting resolution that restricts the usage of

72

CHAPTER 7. DISCUSSION 73

techniques such as time-series decomposition through moving averages. By
de-trending the series, a simpler waveform is obtained that represents motion
during office hours. The neural network will predictably produce higher
forecast accuracy on the simpler de-trended series, however, the results will
not be useful for fine-grained lighting control.

The results of the study indicate that neural networks, such as LSTMs,
are able to learn from sensor data as the series is not a random walk. This
is inferred from the comparison between naive forecasting and model out-
put. An incorrectly tuned time-series model suffer from oversimplification
that tends to produce a replication of recent observations in the forecasting
horizon. Similar effects are observed for random walk time-series. Neverthe-
less, it has been shown that a properly tuned LSTM model is able to model
the stochasticity of data; and is more accurate than a naive forecast even
if it is unable to achieve very high forecast accuracy. Moreover, the quality
of the forecast largely depends on the model predicting the continuation of
occupancy as opposed to the start of occupancy.

it has been demonstrated that
increased efficiency in lighting control leads to significant reduction in energy
consumption.

Ideally, the algorithm should optimize light levels by determining

This is impor-
tant as sensor patterns vary between installations, and the non-occupancy
decision window should vary depending on the type of sensor. For purposes
of the study, the implemented algorithm uses an oversimplified assumption
that light levels should be reduced

Nonetheless, energy savings
have shown to be significant. This establishes that detailed optimization
algorithms can increase energy savings. Lastly, more data is required to de-
termine the impact of predictions on user experience. The trade-off between
energy consumption and user experience places a theoretical bound on the
maximum attainable savings from the lighting control algorithm. Therefore,
it is recommended to frame this as an optimization problem requiring further
research.

Chapter 8

Conclusions

Neural networks are powerful tools that are able to model complex functions
and have the potential to solve real-world problems. One such problem re-
lates to optimizing building automation systems, particularly indoor lighting
control. Efficient systems are highly desirable and have been the subject of a
multitude of research activity. More importantly, energy efficiency is an im-
portant aspect of the global drive to reduce carbon footprints and minimize
the impact of electricity production.

The objective of the study was to develop a predictive model with the
ability to forecast indoor occupancy. Traditional lighting control systems
react to occupancy changes and are prone to inefficient energy consumption
patterns. By developing machine learning models that anticipate the dura-
tion of occupancy based on historical data, it has been demonstrated that
significant energy savings are realizable. Intelligent systems that consume an-
ticipatory knowledge can make real-time decisions, which can be translated
into efficient building automation systems.

It can be stated with confidence that the stated methodology and its
outcomes reinforce the notion that decision making based on time-series
forecasting has demonstrable potential. Furthermore, continued research is
encouraged to improve upon the accuracy and quality of the results.

74

Bibliography

[1] Adamopoulou, A. A., Tryferidis, A. M., and Tzovaras, D. K.
A context-aware method for building occupancy prediction. Energy and
Buildings 110 (2016), 229–244.

[2] Bakker, C. D., Voort, T. V. D., and Rosemann, A. The En-
ergy Saving Potential of Occupancy-Based Lighting Control Strategies
in Open-Plan Offices: The Influence of Occupancy Patterns. Energies
11, 1 (2017), 2.

[3] Baumgartner, T., Wunderlich, F., Jaunich, A., Sato, T.,
Bundy, G., Grießmann, N., Kowalski, J., Burghardt, S., and
Hanebrink, J. Lighting the way: Perspectives on the global lighting
market. McKinsey & Company (2012), 1–58.

[4] Bellido-Outeirino, F. J., Flores-Arias, J. M., Domingo-
Perez, F., Gil-De-Castro, A., and Moreno-Munoz, A. Build-
ing lighting automation through the integration of DALI with wireless
sensor networks. IEEE Transactions on Consumer Electronics 58, 1
(2012), 47–52.

[5] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation.

[6] Crone, S. F., Hibon, M., and Nikolopoulos, K. Advances in
forecasting with neural networks? Empirical evidence from the NN3
competition on time series prediction. International Journal of Fore-
casting 27, 3 (2011), 635–660.

[7] de Bakker, C., Aries, M., Kort, H., and Rosemann, A.
Occupancy-based lighting control in open-plan office spaces: A state-
of-the-art review. Building and Environment 112 (2017), 308–321.

75

BIBLIOGRAPHY 76

[8] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. From Data
Mining to Knowledge Discovery in Databases. AI Magazine 17, 3 (1996),
37.

[9] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[10] Graves, A. Generating Sequences With Recurrent Neural Networks.
1–43.

[11] Graves, A., and Schmidhuber, J. Framewise phoneme classifica-
tion with bidirectional LSTM networks. Proceedings of the International
Joint Conference on Neural Networks 4 (2005), 2047–2052.

[12] Haq, M. A. U., Hassan, M. Y., Abdullah, H., Rahman, H. A.,
Abdullah, M. P., Hussin, F., and Said, D. M. A review on
lighting control technologies in commercial buildings, their performance
and affecting factors. Renewable and Sustainable Energy Reviews 33
(2014), 268–279.

[13] Ho, S., Xie, M., and Goh, T. A comparative study of neural network
and Box-Jenkins ARIMA modeling in time series prediction. Computers
& Industrial Engineering 42, 2-4 (2002), 371–375.

[14] Hochreiter, S., and Schmidhuber, J. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[15] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Intro-
duction to Statistical Learning, vol. 103 of Springer Texts in Statistics.
Springer New York, New York, NY, oct 2013.

[16] Khashei, M., and Bijari, M. An artificial neural network (p, d, q)
model for timeseries forecasting. Expert Systems with Applications 37,
1 (2010), 479–489.

[17] Makridakis, S. G., Wheelwright, S. C., and Hyndman, R. J.
Forecasting: Methods and Applications. Journal of Forecasting (1998),
1.

[18] Mitchell, T. M. Machine Learning. McGraw-Hill, Inc. New York,
NY, USA c©1997, 1997.

[19] Pandharipande, A., and Caicedo, D. Smart indoor lighting sys-
tems with luminaire-based sensing: A review of lighting control ap-
proaches. Energy and Buildings 104 (2015), 369–377.

http://www.deeplearningbook.org

BIBLIOGRAPHY 77

[20] Qolomany, B., Al-Fuqaha, A., Benhaddou, D., and Gupta, A.
Role of Deep LSTM Neural Networks and Wi-Fi Networks in Support of
Occupancy Prediction in Smart Buildings. Proceedings - 2017 IEEE 19th
Intl Conference on High Performance Computing and Communications,
HPCC 2017, 2017 IEEE 15th Intl Conference on Smart City, SmartCity
2017 and 2017 IEEE 3rd Intl Conference on Data Science and Systems,
DSS 2017 2018-Janua, SmartCity (2018), 50–57.

[21] Ryu, S. H., and Moon, H. J. Development of an occupancy predic-
tion model using indoor environmental data based on machine learning
techniques. Building and Environment 107 (2016), 1–9.

[22] Seabold, S., and Perktold, J. Statsmodels: Econometric and
Statistical Modeling with Python. Proc of the 9th Python in Science
Conf., Scipy (2010), 57–61.

[23] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence
learning with neural networks. Advances in Neural Information Process-
ing Systems (NIPS) (2014), 3104–3112.

[24] Tashman, L. J. Out-of-sample tests of forecasting accuracy: An anal-
ysis and review. International Journal of Forecasting 16, 4 (2000), 437–
450.

[25] Werbos, P. J. Backpropagation Through Time: What It Does and
How to Do It. Proceedings of the IEEE 78, 10 (1990), 1550–1560.

[26] Williams, R. J., and Peng, J. An Efficient Gradient-Based Algo-
rithm for On-Line Training of Recurrent Network Trajectories. Neural
Computation 2, 4 (1990), 490–501.

Appendix A

Hyperparameter Tuning

This appendix includes training and validation loss functions visualizations
and summary results, for an LSTM model.

Figure A.1: Visualizing Loss Functions for Learning Rates

Learning Rate Train Loss Valid Loss

0.438 0.447
0.420 0.417
0.431 0.412
0.470 0.451

Table A.1: Results for Learning Rate evaluation

78

APPENDIX A. HYPERPARAMETER TUNING 79

Figure A.2: Visualizing Loss Functions for Batch Sizes

Batch Size Training Time (hrs) Train Loss Valid Loss

7:31 0.429 0.422
4:47 0.422 0.421
3:35 0.423 0.419
3:05 0.424 0.415

Table A.2: Results for Batch Size evaluation

Figure A.3: Visualizing Loss Functions for Dropouts

APPENDIX A. HYPERPARAMETER TUNING 80

Dropout Train Loss Valid Loss

0.417 0.422
0.423 0.419
0.421 0.416
0.460 0.419

Table A.3: Results for Dropouts

	Cover page
	Contents
	1 Introduction
	1.1 Overview of Lighting Systems
	1.2 Lighting Control Techniques
	1.3 Benefits of Proactive Systems
	1.4 Outline of the Thesis

	2 Background
	2.1 Drawbacks of Lighting Control Systems
	2.2 Predictive Models
	2.3 Machine Learning for Predictive Modelling
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Related Works

	3 Data Analysis
	3.1 Quantitative Analysis for Time-Series
	3.2 Components of a Time-Series
	3.2.1 Principles of Decomposition
	3.2.2 Representing Data as Time-Series
	3.2.3 Decomposition Analysis

	3.3 Forecasting Framework
	3.3.1 Look Back Analysis
	3.3.1.1 Autocorrelation Function
	3.3.1.2 Partial Autocorrelation Function

	3.3.2 Feature Evaluation

	3.4 Supervised Learning for Time-Series
	3.4.1 Training and Validation Datasets
	3.4.2 Cross-Validation in Time-Series
	3.4.3 Uniformly Sampling Observations in Mulitple Time-Series

	3.5 Class Sparsity
	3.5.1 Downsampling
	3.5.2 Frequency Distribution

	4 Methodology
	4.1 Feed-Forward Network
	4.2 Training a Neural Network
	4.3 Optimization
	4.3.1 Activation Function
	4.3.2 Loss Function

	4.4 Recurrent Neural Network
	4.4.1 Vanilla RNNs
	4.4.2 LSTMs
	4.4.3 Bidirectional LSTMs
	4.4.4 Stateless vs Stateful LSTMs

	4.5 Statistical Evaluation Metrics
	4.5.1 Confusion Matrix
	4.5.2 Precision/Recall and F1-Score
	4.5.3 Matthews Correlation Coefficient

	4.6 Empirical Evaluation Metrics
	4.6.1 Energy Consumption

	4.7 Lighting Control

	5 Implementation
	5.1 Data Pre-processing
	5.1.1 Sliding Window
	5.1.2 Walk-Forward Validation

	5.2 Network Design
	5.2.1 Feed Forward Network
	5.2.2 Vanilla LSTM
	5.2.3 Bidirectional LSTM

	5.3 Batch Training in LSTM
	5.4 Problem Definition
	5.5 Flow Chart
	5.6 Algorithm

	6 Evaluation
	6.1 Network Dimensioning
	6.1.1 Feed Forward Network
	6.1.2 Vanilla LSTM

	6.2 Evaluation using Statistical Metrics
	6.3 Model Tuning
	6.3.1 Learning Rate, Batch Size and Dropout Regularization
	6.3.2 Bi-directional LSTM
	6.3.3 State Management in LSTMs
	6.3.3.1 Stateless LSTMs
	6.3.3.2 Resetting States Manually

	6.4 Lookback Feature Selection
	6.5 Estimating Model Skill
	6.6 Controlling Luminaires
	6.7 Performance on Test Set

	7 Discussion
	8 Conclusions
	A Hyperparameter Tuning

